3.1.97 \(\int \frac {x \sin (c+d x)}{a+b x^3} \, dx\) [97]

3.1.97.1 Optimal result
3.1.97.2 Mathematica [C] (verified)
3.1.97.3 Rubi [A] (verified)
3.1.97.4 Maple [C] (verified)
3.1.97.5 Fricas [C] (verification not implemented)
3.1.97.6 Sympy [F]
3.1.97.7 Maxima [F]
3.1.97.8 Giac [F]
3.1.97.9 Mupad [F(-1)]

3.1.97.1 Optimal result

Integrand size = 17, antiderivative size = 343 \[ \int \frac {x \sin (c+d x)}{a+b x^3} \, dx=-\frac {\operatorname {CosIntegral}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right ) \sin \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 \sqrt [3]{a} b^{2/3}}-\frac {(-1)^{2/3} \operatorname {CosIntegral}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right ) \sin \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 \sqrt [3]{a} b^{2/3}}+\frac {\sqrt [3]{-1} \operatorname {CosIntegral}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right ) \sin \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 \sqrt [3]{a} b^{2/3}}+\frac {(-1)^{2/3} \cos \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 \sqrt [3]{a} b^{2/3}}-\frac {\cos \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 \sqrt [3]{a} b^{2/3}}+\frac {\sqrt [3]{-1} \cos \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 \sqrt [3]{a} b^{2/3}} \]

output
-1/3*(-1)^(2/3)*cos(c+(-1)^(1/3)*a^(1/3)*d/b^(1/3))*Si(-(-1)^(1/3)*a^(1/3) 
*d/b^(1/3)+d*x)/a^(1/3)/b^(2/3)-1/3*cos(c-a^(1/3)*d/b^(1/3))*Si(a^(1/3)*d/ 
b^(1/3)+d*x)/a^(1/3)/b^(2/3)+1/3*(-1)^(1/3)*cos(c-(-1)^(2/3)*a^(1/3)*d/b^( 
1/3))*Si((-1)^(2/3)*a^(1/3)*d/b^(1/3)+d*x)/a^(1/3)/b^(2/3)-1/3*Ci(a^(1/3)* 
d/b^(1/3)+d*x)*sin(c-a^(1/3)*d/b^(1/3))/a^(1/3)/b^(2/3)-1/3*(-1)^(2/3)*Ci( 
(-1)^(1/3)*a^(1/3)*d/b^(1/3)-d*x)*sin(c+(-1)^(1/3)*a^(1/3)*d/b^(1/3))/a^(1 
/3)/b^(2/3)+1/3*(-1)^(1/3)*Ci((-1)^(2/3)*a^(1/3)*d/b^(1/3)+d*x)*sin(c-(-1) 
^(2/3)*a^(1/3)*d/b^(1/3))/a^(1/3)/b^(2/3)
 
3.1.97.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4 in optimal.

Time = 5.05 (sec) , antiderivative size = 196, normalized size of antiderivative = 0.57 \[ \int \frac {x \sin (c+d x)}{a+b x^3} \, dx=\frac {i \left (\text {RootSum}\left [a+b \text {$\#$1}^3\&,\frac {\cos (c+d \text {$\#$1}) \operatorname {CosIntegral}(d (x-\text {$\#$1}))-i \operatorname {CosIntegral}(d (x-\text {$\#$1})) \sin (c+d \text {$\#$1})-i \cos (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))-\sin (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))}{\text {$\#$1}}\&\right ]-\text {RootSum}\left [a+b \text {$\#$1}^3\&,\frac {\cos (c+d \text {$\#$1}) \operatorname {CosIntegral}(d (x-\text {$\#$1}))+i \operatorname {CosIntegral}(d (x-\text {$\#$1})) \sin (c+d \text {$\#$1})+i \cos (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))-\sin (c+d \text {$\#$1}) \text {Si}(d (x-\text {$\#$1}))}{\text {$\#$1}}\&\right ]\right )}{6 b} \]

input
Integrate[(x*Sin[c + d*x])/(a + b*x^3),x]
 
output
((I/6)*(RootSum[a + b*#1^3 & , (Cos[c + d*#1]*CosIntegral[d*(x - #1)] - I* 
CosIntegral[d*(x - #1)]*Sin[c + d*#1] - I*Cos[c + d*#1]*SinIntegral[d*(x - 
 #1)] - Sin[c + d*#1]*SinIntegral[d*(x - #1)])/#1 & ] - RootSum[a + b*#1^3 
 & , (Cos[c + d*#1]*CosIntegral[d*(x - #1)] + I*CosIntegral[d*(x - #1)]*Si 
n[c + d*#1] + I*Cos[c + d*#1]*SinIntegral[d*(x - #1)] - Sin[c + d*#1]*SinI 
ntegral[d*(x - #1)])/#1 & ]))/b
 
3.1.97.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 343, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {3826, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \sin (c+d x)}{a+b x^3} \, dx\)

\(\Big \downarrow \) 3826

\(\displaystyle \int \left (-\frac {\sin (c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {(-1)^{2/3} \sin (c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b} \left (\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} x\right )}+\frac {\sqrt [3]{-1} \sin (c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b} \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\sin \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \operatorname {CosIntegral}\left (x d+\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 \sqrt [3]{a} b^{2/3}}-\frac {(-1)^{2/3} \sin \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \operatorname {CosIntegral}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 \sqrt [3]{a} b^{2/3}}+\frac {\sqrt [3]{-1} \sin \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \operatorname {CosIntegral}\left (x d+\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 \sqrt [3]{a} b^{2/3}}+\frac {(-1)^{2/3} \cos \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \text {Si}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 \sqrt [3]{a} b^{2/3}}-\frac {\cos \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (x d+\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 \sqrt [3]{a} b^{2/3}}+\frac {\sqrt [3]{-1} \cos \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Si}\left (x d+\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 \sqrt [3]{a} b^{2/3}}\)

input
Int[(x*Sin[c + d*x])/(a + b*x^3),x]
 
output
-1/3*(CosIntegral[(a^(1/3)*d)/b^(1/3) + d*x]*Sin[c - (a^(1/3)*d)/b^(1/3)]) 
/(a^(1/3)*b^(2/3)) - ((-1)^(2/3)*CosIntegral[((-1)^(1/3)*a^(1/3)*d)/b^(1/3 
) - d*x]*Sin[c + ((-1)^(1/3)*a^(1/3)*d)/b^(1/3)])/(3*a^(1/3)*b^(2/3)) + (( 
-1)^(1/3)*CosIntegral[((-1)^(2/3)*a^(1/3)*d)/b^(1/3) + d*x]*Sin[c - ((-1)^ 
(2/3)*a^(1/3)*d)/b^(1/3)])/(3*a^(1/3)*b^(2/3)) + ((-1)^(2/3)*Cos[c + ((-1) 
^(1/3)*a^(1/3)*d)/b^(1/3)]*SinIntegral[((-1)^(1/3)*a^(1/3)*d)/b^(1/3) - d* 
x])/(3*a^(1/3)*b^(2/3)) - (Cos[c - (a^(1/3)*d)/b^(1/3)]*SinIntegral[(a^(1/ 
3)*d)/b^(1/3) + d*x])/(3*a^(1/3)*b^(2/3)) + ((-1)^(1/3)*Cos[c - ((-1)^(2/3 
)*a^(1/3)*d)/b^(1/3)]*SinIntegral[((-1)^(2/3)*a^(1/3)*d)/b^(1/3) + d*x])/( 
3*a^(1/3)*b^(2/3))
 

3.1.97.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3826
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Sym 
bol] :> Int[ExpandIntegrand[Sin[c + d*x], x^m*(a + b*x^n)^p, x], x] /; Free 
Q[{a, b, c, d, m}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, - 
1]) && IntegerQ[m]
 
3.1.97.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.28 (sec) , antiderivative size = 176, normalized size of antiderivative = 0.51

method result size
derivativedivides \(\frac {\frac {d^{3} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {\textit {\_R1} \left (-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}-\frac {d^{3} c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}}{d^{2}}\) \(176\)
default \(\frac {\frac {d^{3} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {\textit {\_R1} \left (-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )\right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}-\frac {d^{3} c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} b c +3 c^{2} b \textit {\_Z} +a \,d^{3}-c^{3} b \right )}{\sum }\frac {-\operatorname {Si}\left (-d x +\textit {\_R1} -c \right ) \cos \left (\textit {\_R1} \right )+\operatorname {Ci}\left (d x -\textit {\_R1} +c \right ) \sin \left (\textit {\_R1} \right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}}{d^{2}}\) \(176\)
risch \(\frac {d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{-\textit {\_R1}} \operatorname {Ei}_{1}\left (i d x +i c -\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right )}{6 b}-\frac {i d c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {{\mathrm e}^{-\textit {\_R1}} \operatorname {Ei}_{1}\left (i d x +i c -\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right )}{6 b}-\frac {d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{\textit {\_R1}} \operatorname {Ei}_{1}\left (-i d x -i c +\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right )}{6 b}+\frac {i d c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (-3 i \textit {\_Z}^{2} b c -i d^{3} a +i b \,c^{3}+b \,\textit {\_Z}^{3}-3 c^{2} b \textit {\_Z} \right )}{\sum }\frac {{\mathrm e}^{\textit {\_R1}} \operatorname {Ei}_{1}\left (-i d x -i c +\textit {\_R1} \right )}{-2 i c \textit {\_R1} +\textit {\_R1}^{2}-c^{2}}\right )}{6 b}\) \(324\)

input
int(x*sin(d*x+c)/(b*x^3+a),x,method=_RETURNVERBOSE)
 
output
1/d^2*(1/3*d^3/b*sum(_R1/(_R1^2-2*_R1*c+c^2)*(-Si(-d*x+_R1-c)*cos(_R1)+Ci( 
d*x-_R1+c)*sin(_R1)),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3)) 
-1/3*d^3*c/b*sum(1/(_R1^2-2*_R1*c+c^2)*(-Si(-d*x+_R1-c)*cos(_R1)+Ci(d*x-_R 
1+c)*sin(_R1)),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3)))
 
3.1.97.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.30 (sec) , antiderivative size = 379, normalized size of antiderivative = 1.10 \[ \int \frac {x \sin (c+d x)}{a+b x^3} \, dx=-\frac {\left (\frac {i \, a d^{3}}{b}\right )^{\frac {2}{3}} {\left (\sqrt {3} + i\right )} {\rm Ei}\left (-i \, d x + \frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} + 1\right )} - i \, c\right )} - \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {2}{3}} {\left (\sqrt {3} + i\right )} {\rm Ei}\left (i \, d x + \frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} + 1\right )} + i \, c\right )} - \left (\frac {i \, a d^{3}}{b}\right )^{\frac {2}{3}} {\left (\sqrt {3} - i\right )} {\rm Ei}\left (-i \, d x + \frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} + 1\right )} - i \, c\right )} + \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {2}{3}} {\left (\sqrt {3} - i\right )} {\rm Ei}\left (i \, d x + \frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (i \, \sqrt {3} - 1\right )}\right ) e^{\left (\frac {1}{2} \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}} {\left (-i \, \sqrt {3} + 1\right )} + i \, c\right )} + 2 i \, \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {2}{3}} {\rm Ei}\left (i \, d x + \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right ) e^{\left (i \, c - \left (-\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right )} - 2 i \, \left (\frac {i \, a d^{3}}{b}\right )^{\frac {2}{3}} {\rm Ei}\left (-i \, d x + \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right ) e^{\left (-i \, c - \left (\frac {i \, a d^{3}}{b}\right )^{\frac {1}{3}}\right )}}{12 \, a d^{2}} \]

input
integrate(x*sin(d*x+c)/(b*x^3+a),x, algorithm="fricas")
 
output
-1/12*((I*a*d^3/b)^(2/3)*(sqrt(3) + I)*Ei(-I*d*x + 1/2*(I*a*d^3/b)^(1/3)*( 
-I*sqrt(3) - 1))*e^(1/2*(I*a*d^3/b)^(1/3)*(I*sqrt(3) + 1) - I*c) - (-I*a*d 
^3/b)^(2/3)*(sqrt(3) + I)*Ei(I*d*x + 1/2*(-I*a*d^3/b)^(1/3)*(-I*sqrt(3) - 
1))*e^(1/2*(-I*a*d^3/b)^(1/3)*(I*sqrt(3) + 1) + I*c) - (I*a*d^3/b)^(2/3)*( 
sqrt(3) - I)*Ei(-I*d*x + 1/2*(I*a*d^3/b)^(1/3)*(I*sqrt(3) - 1))*e^(1/2*(I* 
a*d^3/b)^(1/3)*(-I*sqrt(3) + 1) - I*c) + (-I*a*d^3/b)^(2/3)*(sqrt(3) - I)* 
Ei(I*d*x + 1/2*(-I*a*d^3/b)^(1/3)*(I*sqrt(3) - 1))*e^(1/2*(-I*a*d^3/b)^(1/ 
3)*(-I*sqrt(3) + 1) + I*c) + 2*I*(-I*a*d^3/b)^(2/3)*Ei(I*d*x + (-I*a*d^3/b 
)^(1/3))*e^(I*c - (-I*a*d^3/b)^(1/3)) - 2*I*(I*a*d^3/b)^(2/3)*Ei(-I*d*x + 
(I*a*d^3/b)^(1/3))*e^(-I*c - (I*a*d^3/b)^(1/3)))/(a*d^2)
 
3.1.97.6 Sympy [F]

\[ \int \frac {x \sin (c+d x)}{a+b x^3} \, dx=\int \frac {x \sin {\left (c + d x \right )}}{a + b x^{3}}\, dx \]

input
integrate(x*sin(d*x+c)/(b*x**3+a),x)
 
output
Integral(x*sin(c + d*x)/(a + b*x**3), x)
 
3.1.97.7 Maxima [F]

\[ \int \frac {x \sin (c+d x)}{a+b x^3} \, dx=\int { \frac {x \sin \left (d x + c\right )}{b x^{3} + a} \,d x } \]

input
integrate(x*sin(d*x+c)/(b*x^3+a),x, algorithm="maxima")
 
output
-1/2*((cos(c)^2 + sin(c)^2)*x*cos(d*x + c) + (x*cos(d*x + c)^2*cos(c) + x* 
cos(c)*sin(d*x + c)^2)*cos(d*x + 2*c) + 2*(((b*cos(c)^2 + b*sin(c)^2)*d*x^ 
3 + (a*cos(c)^2 + a*sin(c)^2)*d)*cos(d*x + c)^2 + ((b*cos(c)^2 + b*sin(c)^ 
2)*d*x^3 + (a*cos(c)^2 + a*sin(c)^2)*d)*sin(d*x + c)^2)*integrate(1/2*(2*b 
*x^3 - a)*cos(d*x + c)/(b^2*d*x^6 + 2*a*b*d*x^3 + a^2*d), x) + 2*(((b*cos( 
c)^2 + b*sin(c)^2)*d*x^3 + (a*cos(c)^2 + a*sin(c)^2)*d)*cos(d*x + c)^2 + ( 
(b*cos(c)^2 + b*sin(c)^2)*d*x^3 + (a*cos(c)^2 + a*sin(c)^2)*d)*sin(d*x + c 
)^2)*integrate(1/2*(2*b*x^3 - a)*cos(d*x + c)/((b^2*d*x^6 + 2*a*b*d*x^3 + 
a^2*d)*cos(d*x + c)^2 + (b^2*d*x^6 + 2*a*b*d*x^3 + a^2*d)*sin(d*x + c)^2), 
 x) + (x*cos(d*x + c)^2*sin(c) + x*sin(d*x + c)^2*sin(c))*sin(d*x + 2*c))/ 
(((b*cos(c)^2 + b*sin(c)^2)*d*x^3 + (a*cos(c)^2 + a*sin(c)^2)*d)*cos(d*x + 
 c)^2 + ((b*cos(c)^2 + b*sin(c)^2)*d*x^3 + (a*cos(c)^2 + a*sin(c)^2)*d)*si 
n(d*x + c)^2)
 
3.1.97.8 Giac [F]

\[ \int \frac {x \sin (c+d x)}{a+b x^3} \, dx=\int { \frac {x \sin \left (d x + c\right )}{b x^{3} + a} \,d x } \]

input
integrate(x*sin(d*x+c)/(b*x^3+a),x, algorithm="giac")
 
output
integrate(x*sin(d*x + c)/(b*x^3 + a), x)
 
3.1.97.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x \sin (c+d x)}{a+b x^3} \, dx=\int \frac {x\,\sin \left (c+d\,x\right )}{b\,x^3+a} \,d x \]

input
int((x*sin(c + d*x))/(a + b*x^3),x)
 
output
int((x*sin(c + d*x))/(a + b*x^3), x)